Problem

Source: 2021 Cono Sur Shortlist G5 https://artofproblemsolving.com/community/c1088686_cono_sur_shortlist__geometry

Tags: geometry, equal angles



Let $\vartriangle ABC$ be a triangle with circumcenter $O$, orthocenter $H$, and circumcircle $\omega$. $AA'$, $BB'$ and $CC'$ are altitudes of $\vartriangle ABC$ with $A'$ in $BC$, $B'$ in $AC$ and $C'$ in $AB$. $P$ is a point on the segment $AA'$. The perpenicular line to $B'C'$ from $P$ intersects $BC$ at $K$. $AA'$ intersects $\omega$ at $M \ne A$. The lines $MK$ and $AO$ intersect at $Q$. Prove that $\angle CBQ = \angle PBA$.