Problem

Source: 2021 Cono Sur Shortlist G2 https://artofproblemsolving.com/community/c1088686_cono_sur_shortlist__geometry

Tags: geometry, concurrency, concurrent, arc midpoint



Let $ABC$ be an acute triangle. Define $A_1$ the midpoint of the largest arc $BC$ of the circumcircle of $ABC$ . Let $A_2$ and $A_3$ be the feet of the perpendiculars from $A_1$ on the lines $AB$ and $AC$ , respectively. Define $B_1$, $B_2$, $B_3$, $C_1$, $C_2$, and $C_3$ analogously. Show that the lines $A_2A_3$, $B_2B_3$, $C_2C_3$ are concurrent.