An incircle of triangle $ABC$ touches $AB$, $BC$, $AC$ at points $C_1$, $A_1$,$ B_1$ respectively. Let $A'$ be the reflection of $A_1$ about $B_1C_1$, point $C'$ is defined similarly. Lines $A'C_1$ and $C'A_1$ meet at point $D$. Prove that $BD \parallel AC$.