Let $ABCD$ be a cyclic quadrilateral, $O$ be its circumcenter, $P$ be a common points of its diagonals, and $M , N$ be the midpoints of $AB$ and $CD$ respectively. A circle $OPM$ meets for the second time segments $AP$ and $BP$ at points $A_1$ and $B_1$ respectively and a circle $OPN$ meets for the second time segments $CP$ and $DP$ at points $C_1$ and $D_1$ respectively. Prove that the areas of quadrilaterals $AA_1B_1B$ and $CC_1D_1D$ are equal.