Problem

Source: Sharygin Finals 2022 10.5

Tags: geometry, concurrency, common tangents



Let$ AB$ and $AC$ be the tangents from a point $A$ to a circle $ \Omega$. Let $M$ be the midpoint of $BC$ and $P$ be an arbitrary point on this segment. A line $AP$ meets $ \Omega$ at points $D$ and $E$. Prove that the common external tangents to circles $MDP$ and $MPE$ meet on the midline of triangle $ABC$.