Problem

Source: Latvian TST for Baltic Way 2022 P2

Tags: inequalities



Prove that for positive real numbers $a,b,c$ satisfying $abc=1$ the following inequality holds: $$ \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \ge \frac{a^2+1}{2a}+\frac{b^2+1}{2b}+\frac{c^2+1}{2c}.$$