Problem

Source: 2018 Chile National Olympiad level 2 p4

Tags: floor function, algebra, number theory, function



Find all postitive integers n such that $$\left\lfloor \frac{n}{2} \right\rfloor \cdot \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n}{4} \right\rfloor=n^2$$where $\lfloor x \rfloor$ represents the largest integer less than the real number $x$.