Problem

Source: 2022 NZMO - New Zealand Maths Olympiad Round 2 p3

Tags: combinatorics, Subsets



Let $S$ be a set of $10$ positive integers. Prove that one can find two disjoint subsets $A =\{a_1, ..., a_k\}$ and $B = \{b_1, ... , b_k\}$ of $S$ with $|A| = |B|$ such that the sums $x =\frac{1}{a_1}+ ... +\frac{1}{a_k}$ and $y =\frac{1}{b_1}+ ... +\frac{1}{b_k}$ differ by less than $0.01$, i.e., $|x - y| < 1/100$.