The sequence $x_1, x_2, x_3, . . .$ is defined by $x_1 = 2022$ and $x_{n+1}= 7x_n + 5$ for all positive integers $n$. Determine the maximum positive integer $m$ such that $$\frac{x_n(x_n - 1)(x_n - 2) . . . (x_n - m + 1)}{m!}$$is never a multiple of $7$ for any positive integer $n$.
Problem
Source: 2022 NZMO - New Zealand Maths Olympiad Round 2 p5
Tags: number theory, multiple, divides, divisible, recurrence relation