Triangle $ABC$ is right-angled at $B$ and has incentre $I$. Points $D$, $E$ and $F$ are the points where the incircle of the triangle touches the sides $BC$, $AC$ and AB respectively. Lines $CI$ and $EF$ intersect at point $P$. Lines $DP$ and $AB$ intersect at point $Q$. Prove that $AQ = BF$.
Problem
Source: 2022 NZMO - New Zealand Maths Olympiad Round 2 p4
Tags: geometry, incircle, right triangle