Find all triples $(a, b, c) $ of real numbers such that $a^2 + b^2 + c^2 = 1$ and $a(2b - 2a - c) \ge \frac12$.
Source: 2022 NZMO - New Zealand Maths Olympiad Round 2 p2
Tags: algebra, inequalities
Find all triples $(a, b, c) $ of real numbers such that $a^2 + b^2 + c^2 = 1$ and $a(2b - 2a - c) \ge \frac12$.