Problem

Source: 2020 RMM Shortlist N1

Tags: number theory, function, RMM, RMM 2020, RMM Shortlist



Determine all pairs of positive integers $(m, n)$ for which there exists a bijective function \[f : \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_n\]such that the vectors $f(\mathbf{v}) + \mathbf{v}$, as $\mathbf{v}$ runs through all of $\mathbb{Z}_m \times \mathbb{Z}_n$, are pairwise distinct. (For any integers $a$ and $b$, the vectors $[a, b], [a + m, b]$ and $[a, b + n]$ are treated as equal.) Poland, Wojciech Nadara