Problem

Source: 2022 Austrian Mathematical Olympiad Junior Regional Competition , Problem 3

Tags: geometry, equal segments, semicircle



A semicircle is erected over the segment $AB$ with center $M$. Let $P$ be one point different from $A$ and $B$ on the semicircle and $Q$ the midpoint of the arc of the circle $AP$. The point of intersection of the straight line $BP$ with the parallel to $P Q$ through $M$ is $S$. Prove that $PM = PS$ holds. (Karl Czakler)