Given is an equilateral triangle $ABC$ with circumcenter $O$. Let $D$ be a point on to minor arc $BC$ of its circumcircle such that $DB>DC$. The perpendicular bisector of $OD$ meets the circumcircle at $E, F$, with $E$ lying on the minor arc $BC$. The lines $BE$ and $CF$ meet at $P$. Prove that $PD \perp BC$.
Problem
Source: Iberoamerican 2022, Day 1, P1
Tags: geometry
29.09.2022 15:48
Triangles $ODE$ and $ODF$ are equilateral and now quick angle chase shows $BD \perp CP$ and $CD \perp BP$, so $D$ is the orthocenter of $BCP$, whence $PD \perp BC$.
29.09.2022 16:26
By construction, $DO = DF = DE$. since $OD$ and $FE$ bisects each other, $OEDF$ is a parallelogram $\Rightarrow \angle DOF = 90 - \angle OFE = 90 - \angle FED = 90 - \frac{1}{2} \angle DOF \Rightarrow \angle DOF = 60 \Rightarrow \angle EOF = 120 = \angle BOC \Rightarrow \angle EBF = 60 = \angle PEC$, and $PE = PC \Rightarrow \triangle PEC$ is equilateral $\Rightarrow \angle OPF = 30 = OEF$, so the quadrilateral $PEOF$ is cyclic. Hence $DE = DF = DP$ so $D$ is the circumcenter of $\triangle PEF$. Let $L$ be the foot of $P$ from $EF$. We know that $\angle EPL = \angle KPC$, where $K$ is $PD \cap BC$. Is suffice to prove that $\angle PEF = \angle PCK$. Note that $\angle PEF = \angle PEC + \angle CEF = 60 + \angle ECB = \angle PCK $, so we are done. $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \blacksquare$ [asy][asy] import graph; import math; import olympiad; import geometry; import cse5; size(8cm); void my_dot(pair A) {fill(circle(A, .01),black); } pair A = dir(90); pair B = dir(210); pair C = dir(330); pair O = circumcenter(A,B,C); pair D = dir(290); real r1 = circumradius(A,B,C); path c1 = circle(O, r1); path c2 = circle(D, r1); pair E = intersectionpoints(c1,c2)[1]; pair F = intersectionpoints(c1,c2)[0]; pair P = extension(B,F,C,E); pair L = foot(P,F,E); pair K = extension(P,D,B,C); draw(circumcircle(A,B,C)); draw(A--B--C--cycle, linewidth(1.2)); draw(B--P); draw(E--P); draw(O--F); draw(O--E); draw(F--E); draw(P--L); draw(P--K); my_dot(A); my_dot(B); my_dot(C); my_dot(O); my_dot(D); my_dot(E); my_dot(F); my_dot(P); my_dot(L); my_dot(K); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, dir(340)); label("$O$", O, NE); label("$D$", D, SE); label("$E$", F, dir(SW)); label("$F$", E, dir(E)); label("$P$", P, dir(340)); label("$L$", L, dir(245)); label("$K$", K, SE); [/asy][/asy]
29.09.2022 18:40
Notice that $OEDF$ is a rhombus therefore $\angle EDF=120^\circ$ and $\angle EAF=60^\circ$. Hence $BE=CF$. Also notice that \[ \angle PEF= 60^\circ+\angle CAF=60^\circ+\angle BCE=\angle AFE\]So $AE\parallel PF$. Similarly $AF\parallel PE$. Therefore $AEPF$ is a parallelogram. Notice that $\angle EBD+\angle BEA=30^\circ+60^\circ=90^\circ\implies BD\perp PC$. Similarly $CD\perp PB$. Hence $D$ is the orthocenter of $\triangle PBC$.
02.10.2022 20:09
This problem was proposed by me, Santiago Rodriguez from Colombia. I wrote it as a challenge, as I wanted to see if I could create a non-trivial problem about an equilateral triangle. This is what I came up with, I believe it is somewhat cute. My solutions are quite similar to the ones already posted so I won't post them unless I'm asked to. I hope that you enjoy my problem.
24.11.2022 19:10
I have attached a diagram for supporting my argument!
Attachments:

24.11.2022 19:50
lifeismathematics wrote:
I have attached a diagram for supporting my argument! beautiful!
10.03.2023 03:53
Es un Resultado conocido que las intersecciones de la mediatriz de un rádio con la circunferencia forman triangulos equilateros con los puntos que determinan el radio => ∆ABC~∆OFD~ODE Declaración: D es el ortocentro del triángulo BCP Demostración: Vamos por números complejos: La condición ∆ABC~OFD es equivalente a: a--b/c--b=f/d(¶) => si BD es perpendicular a CF => debe cumplirse: c--f/d-b + c--f(db)/d--b(cf)=0 <=> c--f/d--b • [(db/cf) +1]=0 Pero por (¶) sabemos que d/f=c--b/a--b Sustitúyendo llegamos a la conclusión de que si probamos que (c--b)b/(a--b)c=-1 concluimos abriendo y cancelando terminos semejantes obtenemos que es equivalente a probar que ac=b² lo cual es cierto ya q el ∆ ABC es equilátero => concluimos, de forma análoga probamos que CD es perpendicular a BP y en consecuencia que D es el ortocentro de ∆BCP => PD es perpendicular a BC.