A football league has $n$ teams. Each team plays one game with every other team. Each win is awarded $2$ points, each tie $1$ point, and each loss $0$ points. After the league is over, the following statement is true: for every subset $S$ of teams in the league, there is a team (which may or may not be in $S$) such that the total points the team obtained by playing all the teams in $S$ is odd. Prove that $n$ is even.