Prove that for every integer $n > 1$ there exist integers $x$ and $y$ such that $$\frac{1}{n}=\frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+...+\frac{1}{y(y+1)}.$$
Problem
Source: Mathematics Regional Olympiad of Mexico West 2019 P5
Tags: number theory, Diophantine equation