Let $n\ge 3$. Suppose $a_1, a_2, ... , a_n$ are $n$ distinct in pairs real numbers. In terms of $n$, find the smallest possible number of different assumed values by the following $n$ numbers: $$a_1 + a_2, a_2 + a_3,..., a_{n- 1} + a_n, a_n + a_1$$
Problem
Source: 2022 Czech-Polish-Slovak Match Junior, individual p1 CPSJ
Tags: combinatorics, algebra