Problem

Source: Thailand TSTST 2021, test 3, P3

Tags: combinatorics



An odd positive integer $n$ is called pretty if there exists at least one permutation $a_1, a_2,..., a_n$, of $1,2,...,n$, such that all $n$ sums $a_1-a_2+a_3-...+a_n$, $a_2-a_3+a_4-...+a_1$,..., $a_n-a_1+a_2-...+a_{n-1}$ are positive. Find all pretty integers.