Problem

Source: 2022 Chinese Girls' Mathematical Olympiad Day 2 Problem 8

Tags: algebra, inequalities



Let $x_1, x_2, \ldots, x_{11}$ be nonnegative reals such that their sum is $1$. For $i = 1,2, \ldots, 11$, let \[ y_i = \begin{cases} x_{i} + x_{i + 1}, & i \, \, \textup{odd} ,\\ x_{i} + x_{i + 1} + x_{i + 2}, & i \, \, \textup{even} ,\end{cases} \]where $x_{12} = x_{1}$. And let $F (x_1, x_2, \ldots, x_{11}) = y_1 y_2 \ldots y_{11}$. Prove that $x_6 < x_8$ when $F$ achieves its maximum.