Problem

Source: 2022 CGMO Day1 P1

Tags: Sequence, inequalities



Consider all the real sequences $x_0,x_1,\cdots,x_{100}$ satisfying the following two requirements: (1)$x_0=0$; (2)For any integer $i,1\leq i\leq 100$,we have $1\leq x_i-x_{i-1}\leq 2$. Find the greatest positive integer $k\leq 100$,so that for any sequence $x_0,x_1,\cdots,x_{100}$ like this,we have \[x_k+x_{k+1}+\cdots+x_{100}\geq x_0+x_1+\cdots+x_{k-1}.\]