Consider all the real sequences $x_0,x_1,\cdots,x_{100}$ satisfying the following two requirements: (1)$x_0=0$; (2)For any integer $i,1\leq i\leq 100$,we have $1\leq x_i-x_{i-1}\leq 2$. Find the greatest positive integer $k\leq 100$,so that for any sequence $x_0,x_1,\cdots,x_{100}$ like this,we have \[x_k+x_{k+1}+\cdots+x_{100}\geq x_0+x_1+\cdots+x_{k-1}.\]
Problem
Source: 2022 CGMO Day1 P1
Tags: Sequence, inequalities
Tintarn
12.08.2022 10:36
The largest such $k$ is $k=67$. Indeed, let us replace $100$ by $n$. By the condition, we have $x_{j+d} \ge x_j+d$ for all $j,d \ge 1$ and hence
\[x_k+x_{k+1}+\dots+x_n \ge x_{k-1}+x_{k-2}+\dots+x_{2k-1-n}+(n+1-k)^2.\]Also note that this sharp since we can make the sequence $x_{2k-1-n},\dots,x_n$ just grow linearly with slope $1$.
So the problem is equivalent to whether we have
\[x_1+x_2+\dots+x_{2k-2-n} \le (n+1-k)^2\]for all such sequences. But the LHS can be at most
\[2+4+\dots+2(2k-2-n)=(2k-2-n)(2k-1-n)\]and again this is clearly sharp. So the condition is satisfied iff $(2k-2-n)(2k-1-n) \le (n+1-k)^2$ which in turn is clearly satisfied iff $2k-1-n \le n+1-k$ and hence iff $k \le \frac{2n+2}{3}$.
Inserting $n=100$ we get that the condition holds iff $k \le 67$.
mihaig
12.08.2022 16:11
Splendid!!!
f6700417
13.08.2022 16:46
Let d_{i}=x_{i}-x_{i-1}, i=1, 2, ..., 100. ∴x_{k}=\sum_{i=1}^{k}d_{i}. LHS=\sum_{j=k}^{100}(101-j)d_{j}+\sum_{j=1}^{k-1}(101-k)d_{j}. RHS=\sum_{j=1}^{k-1}(k-j)d_{j}. ∴\sum_{j=k}^{100}(101-j)d_{j}≥\sum_{j=1}^{k-1}(2k-j-101)d_{j}. If k≥68, RHS=\frac{(3k-202)(k-1)}{2}≥67>66≥LHS. If k=67, LHS≥595>0>RHS. ∴k_{max}=67.