Problem

Source: Sharygin 2022 Finals 10-11.2

Tags: geometry



Let $ABCD$ be a convex quadrilateral. The common external tangents to circles $(ABC)$ and $(ACD)$ meet at point $E$, the common external tangents to circles $(ABD)$ and $(BCD)$ meet at point $F$. Let $F$ lie on $AC$, prove that $E$ lies on $BD$.