Problem

Source: Sharygin Finals 2022 9.7

Tags: geometry



Let $H$ be the orthocenter of an acute-angled triangle $ABC$. The circumcircle of triangle $AHC$ meets segments $AB$ and $BC$ at points $P$ and $Q$. Lines $PQ$ and $AC$ meet at point $R$. A point $K$ lies on the line $PH$ in such a way that $\angle KAC = 90^{\circ}$. Prove that $KR$ is perpendicular to one of the medians of triangle $ABC$.