Problem

Source: Sharygin Finals 2022 9.5

Tags: geometry



Chords $AB$ and $CD$ of a circle $\omega$ meet at point $E$ in such a way that $AD = AE = EB$. Let $F$ be a point of segment $CE$ such that $ED = CF$. The bisector of angle $AFC$ meets an arc $DAC$ at point $P$. Prove that $A$, $E$, $F$, and $P$ are concyclic.