Problem

Source: USA TST 2009 #4

Tags: ratio, geometry, geometric transformation, reflection, trigonometry, parallelogram, similar triangles



Let $ ABP, BCQ, CAR$ be three non-overlapping triangles erected outside of acute triangle $ ABC$. Let $ M$ be the midpoint of segment $ AP$. Given that $ \angle PAB = \angle CQB = 45^\circ$, $ \angle ABP = \angle QBC = 75^\circ$, $ \angle RAC = 105^\circ$, and $ RQ^2 = 6CM^2$, compute $ AC^2/AR^2$. Zuming Feng.