Problem

Source: USA TST 2009 #3

Tags: algebra, polynomial, geometry, geometric transformation, number theory, least common multiple, greatest common divisor



For each positive integer $ n$, let $ c(n)$ be the largest real number such that \[ c(n) \le \left| \frac {f(a) - f(b)}{a - b}\right|\] for all triples $ (f, a, b)$ such that --$ f$ is a polynomial of degree $ n$ taking integers to integers, and --$ a, b$ are integers with $ f(a) \neq f(b)$. Find $ c(n)$. Shaunak Kishore.