Problem

Source: USA TST 2009 #2

Tags: geometry, circumcircle, rectangle, parabola, trapezoid, symmetry, TST



Let $ ABC$ be an acute triangle. Point $ D$ lies on side $ BC$. Let $ O_B, O_C$ be the circumcenters of triangles $ ABD$ and $ ACD$, respectively. Suppose that the points $ B, C, O_B, O_C$ lies on a circle centered at $ X$. Let $ H$ be the orthocenter of triangle $ ABC$. Prove that $ \angle{DAX} = \angle{DAH}$. Zuming Feng.