Problem

Source: Olimphíada 2022- Problem 4/Level 3

Tags: geometry, incenter



Let $ABC$ be a triangle, $I$ its incenter and $\omega$ its incircle. Let $D$,$E$ and $F$ be the points of tangency of $\omega$ with $BC$,$AC$ and $AB$, respectively and $M$,$N$ and $P$ be the midpoints of $BC$, $AC$ and $AB$. Let $D'$ be the second intersection of $DI$ with $\omega$, $Q$ the intersection of $DI$ with $EF$ and $U \ne Q$ be the intersection of $(AD'Q)$ with $(DMQ)$. Suppose that $U$ lies on the circumcircle of $BDF$. Prove that $PN, AM, UF$ concur.