Problem

Source: Olimphíada 2022- Problem 2/Level 3

Tags: algebra, Sequence



We say that a real $a\geq-1$ is philosophical if there exists a sequence $\epsilon_1,\epsilon_2,\dots$, with $\epsilon_i \in\{-1,1\}$ for all $i\geq1$, such that the sequence $a_1,a_2,a_3,\dots$, with $a_1=a$, satisfies $$a_{n+1}=\epsilon_{n}\sqrt{a_{n}+1},\forall n\geq1$$and is periodic. Find all philosophical numbers.