Problem

Source: 2021 Israel TST Test 6 P3

Tags: geometry, incenter, circumcircle



In an inscribed quadrilateral $ABCD$, we have $BC=CD$ but $AB\neq AD$. Points $I$ and $J$ are the incenters of triangles $ABC$ and $ACD$ respectively. Point $K$ was chosen on segment $AC$ so that $IK=JK$. Points $M$ and $N$ are the incenters of triangles $AIK$ and $AJK$. Prove that the perpendicular to $CD$ at $D$ and the perpendicular to $KI$ at $I$ intersect on the circumcircle of $MAN$.