Problem

Source: Elmo Revenge #5

Tags: algebra, troll, revenge elmo, revenge elsmo



Let $f(x)=x+3x^{\frac 23}, g(x)=x+x^{\frac 13}$. Call a sequence $\{a_i\}_{i\ge 0}$ satisfactory if for all $i\ge 1, a_i\in \{f(a_{i-1}), g(a_{i-1})\}$. Find all pairs of real numbers $(x,y)$ such that there exist satisfactory sequences $(a_i)_{i\ge 0}, (b_i)_{i\ge 0}$ and positive integers $m$ and $n$, such that $a_0 =x$, $b_0 = y$, and $$|a_m-b_n|<1$$