Problem

Source: IMO ShortList 2008, Algebra problem 6

Tags: function, algebra, functional equation, range, IMO Shortlist



Let $ f: \mathbb{R}\to\mathbb{N}$ be a function which satisfies $ f\left(x + \dfrac{1}{f(y)}\right) = f\left(y + \dfrac{1}{f(x)}\right)$ for all $ x$, $ y\in\mathbb{R}$. Prove that there is a positive integer which is not a value of $ f$. Proposed by Žymantas Darbėnas (Zymantas Darbenas), Lithuania