Consider functions $f$ satisfying the following four conditions: (1) $f$ is real-valued and defined for all real numbers. (2) For any two real numbers $x$ and $y$ we have $f(xy)=f(x)f(y)$. (3) For any two real numbers $x$ and $y$ we have $f(x+y) \le 2(f(x)+f(y))$. (4) We have $f(2)=4$. Prove that: a) There is a function $f$ with $f(3)=9$ satisfying the four conditions. b) For any function $f$ satisfying the four conditions, we have $f(3) \le 9$.
Problem
Source: Germany 2022, Problem 6
Tags: function, algebra, algebra proposed, functional equation, Functional inequality, functional inequalities
25.06.2022 20:09
Tintarn wrote: Consider functions $f$ satisfying the following four conditions: (1) $f$ is real-valued and defined for all real numbers. (2) For any two real numbers $x$ and $y$ we have $f(xy)=f(x)f(y)$. (3) For any two real numbers $x$ and $y$ we have $f(x+y) \le 2(f(x)+f(y))$. (4) We have $f(2)=4$. Prove that: a) There is a function $f$ with $f(3)=9$ satisfying the four conditions. b) For any function $f$ satisfying the four conditions, we have $f(3) \le 9$. a) $f(x)=x^2$ satisfies (1),(2),(3) and (4) since $(x+y)^2\leq 2(x^2+y^2)\Leftrightarrow0\leq(x-y)^2$. We have $f(3)=3^2=9$. b) By (2) we have $f(1)=f(1)^2$ and $f(1)\in\{0,1\}$. By (3) and (4) we have $4=f(2)\leq4f(1)$. Thus $f(1)=1$. Using $f(1)=1,f(2)=2$ and (2) we get $f(2^k)=2^{2k}$. Let $3^n=\sum_{i=0}^{\left\lfloor n\log_23\right\rfloor}a_i2^i$ with $a_i\in\{0,1\}$ and define $M_n$ as the set of indices $i$ with $a_i=1$. Let $M_n=\{b_0,b_1,\ldots,b_m\}$ with $b_0\leq b_1\leq\ldots\leq b_m$. We have \begin{align*} f(3)^n=f\left(3^n\right)=f\left(\sum_{j=0}^m2^{b_j}\right)\leq2f(2^{b_m})+2f\left(\sum_{j=0}^{m-1}2^{b_j}\right)\leq2f(2^{b_m})+4f(2^{b_{m-1}})+4f\left(\sum_{j=0}^{m-2}2^{b_j}\right)\\ \leq\ldots\leq\sum_{j=0}^m2^{m+1-j}f(2^{b_j})=\sum_{j=0}^m2^{m+1-j+2b_j}\leq\sum_{i=0}^{\left\lfloor n\log_23\right\rfloor}2^{\left\lfloor n\log_23\right\rfloor+1+i}\leq\left(\left\lfloor n\log_23\right\rfloor+1\right)2^{2\left\lfloor n\log_23\right\rfloor+1} \end{align*}Thus $f(3)\leq\lim_{n\to\infty}\sqrt[n]{\left(\left\lfloor n\log_23\right\rfloor+1\right)2^{2\left\lfloor n\log_23\right\rfloor+1}}=9$.
14.02.2023 02:56