Problem

Source: 2022 IRN TWN Friendly Math Competition P4

Tags: geometry, moving points, Taiwan, Iran



Given an acute triangle $ABC$, let $P$ be an arbitrary point on segment $BC$. A line passing through $P$ and perpendicular to $AC$ intersects $AB$ at $P_b$. A line passing through $P$ and perpendicular to $AB$ intersects $AC$ at $P_c$. Prove that the circumcircle of triangle $AP_bP_c$ passes through a fixed point other than $A$ when $P$ varies on segment $BC$. Proposed by ltf0501