Problem

Source: 2022 IRN TWN Friendly math competition P2

Tags: algebra, functional equation, function, Taiwan, Iran



Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that: $\bullet$ $f(x)<2$ for all $x\in (0,1)$; $\bullet$ for all real numbers $x,y$ we have: $$max\{f(x+y),f(x-y)\}=f(x)+f(y)$$ Proposed by Navid Safaei