Problem

Source: 2022 IRN TWN Friendly Math Competition P3

Tags: geometry, incenter, Taiwan, Iran, parallel, incircle



Let $ABC$ be a scalene triangle with $I$ be its incenter. The incircle touches $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. $Y$, $Z$ are the midpoints of $DF$, $DE$ respectively, and $S$, $V$ are the intersections of lines $YZ$ and $BC$, $AD$, respectively. $T$ is the second intersection of $\odot(ABC)$ and $AS$. $K$ is the foot from $I$ to $AT$. Prove that $KV$ is parallel to $DT$. Proposed by ltf0501