What is the smallest value of $k$ for which the inequality \begin{align*} ad-bc+yz&-xt+(a+c)(y+t)-(b+d)(x+z)\leq \\ &\leq k\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2 \end{align*}holds for any $8$ real numbers $a,b,c,d,x,y,z,t$? Edit: Fixed a mistake! Thanks @below.
Problem
Source: 2021 Israel TST 8 P3
Tags: inequalities
01.06.2022 07:35
What is the smallest value of $k$ for which the inequality \begin{align*} ad-bc+yz&-xt+(a+c)(x+t)-(b+d)(y+z)\leq \\ &\leq k\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2 \end{align*}holds for any $8$ real numbers $a,b,c,d,x,y,z,t$?
01.06.2022 07:54
What is the smallest value of $k$ for which the inequality \begin{align*} ad-bc+yz&-xt+(a+c)(x+t)-(b+d)(y+z)\leq \\ &\leq k\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2 \end{align*}holds for any $8$ real numbers $a,b,c,d,x,y,z,t$?
01.06.2022 09:12
What is the smallest value of $k$ for which the inequality \begin{align*} ad-bc+yz&-xt+(a+c)(x+t)-(b+d)(y+z)\leq \\ &\leq k\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2 \end{align*}holds for any $8$ real numbers $a,b,c,d,x,y,z,t$?
02.06.2022 04:44
Bump to this beauty