Problem

Source: 2017 XX All-Ukrainian Tournament of Young Mathematicians named after M. Y. Yadrenko, Qualifying p5

Tags: geometry, lattice points, area of a triangle, areas, Ukrainian TYM



The Fibonacci sequence is given by equalities $$F_1=F_2=1, F_{k+2}=F_k+F_{k+1}, k\in N$$. a) Prove that for every $m \ge 0$, the area of the triangle $A_1A_2A_3$ with vertices $A_1(F_{m+1},F_{m+2})$, $A_2 (F_{m+3},F_{m+4})$, $A_3 (F_{m+5},F_{m+6})$ is equal to $0.5$. b) Prove that for every $m \ge 0$ the quadrangle $A_1A_2A_4$ with vertices $A_1(F_{m+1},F_{m+2})$, $A_2 (F_{m+3},F_{m+4})$, $A_3 (F_{m+5},F_{m+6})$, $A_4 (F_{m+7},F_{m+8})$ is a trapezoid, whose area is equal to $2.5$. c) Prove that the area of the polygon $A_1A_2...A_n$ , $n \ge3$ with vertices does not depend on the choice of numbers $m \ge 0$, and find this area.