Given is an acute triangle $ABC$ with $AB<AC$ with altitudes $BD$ and $CE$. Let the tangents to the circumcircle at $B$ and $C$ meet at $Y$. Let $\omega_1$ be the circle through $A$ tangent to $DE$ at $E$; define $\omega_2$ similarly, and let their intersection point be $X$. Prove that $A, X, Y$ are colinear. $\textit{Proposed by Nikola Velov}$