Problem

Source: Macedonian TST 2022, P3

Tags: algebra, function, functional equation



We consider all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(f(n)+n)=n$ and $f(a+b-1) \leq f(a)+f(b)$ for all positive integers $a, b, n$. Prove that there are at most two values for $f(2022)$. $\textit {Proposed by Ilija Jovcheski}$