Problem

Source: Champions Tournament (Ukraine) - Турнір чемпіонів - 2001 Seniors p4

Tags: pentagon, geometry, equal angles, equal segments, Champions Tournament



Given a convex pentagon $ABCDE$ in which $\angle ABC = \angle AED = 90^o$, $\angle BAC= \angle DAE$. Let $K$ be the midpoint of the side $CD$, and $P$ the intersection point of lines $AD$ and $BK$, $Q$ be the intersection point of lines $AC$ and $EK$. Prove that $BQ = PE$.