Problem

Source: Last round of the Bulgarian Mathematical Olympiad 2009 Maybe Hard

Tags: integration, calculus, derivative, inequalities proposed, inequalities



Prove that if $ a_{1},a_{2},\ldots,a_{n}$, $ b_{1},b_{2},\ldots,b_{n}$ are arbitrary taken real numbers and $ c_{1},c_{2},\ldots,c_{n}$ are positive real numbers, than $ \left(\sum_{i,j = 1}^{n}\frac {a_{i}a_{j}}{c_{i} + c_{j}}\right)\left(\sum_{i,j = 1}^{n}\frac {b_{i}b_{j}}{c_{i} + c_{j}}\right)\ge \left(\sum_{i,j = 1}^{n}\frac {a_{i}b_{j}}{c_{i} + c_{j}}\right)^{2}$.