Peter picked a positive integer, multiplied it by 5, multiplied the result by 5,then multiplied the result by 5 again and so on. Altogether $k$ multiplications were made. It so happened that the decimal representations of the original number and of all $k$ resulting numbers in this sequence do not contain digit $7$. Prove that there exists a positive integer such that it can be multiplied $k$ times by $2$ so that no number in this sequence contains digit $7$.