Let $ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$. Let the height from $A$ cut its side $BC$ at $D$. Let $I, I_B, I_C$ be the incenters of triangles $ABC, ABD, ACD$ respectively. Let also $EB, EC$ be the excenters of $ABC$ with respect to vertices $B$ and $C$ respectively. If $K$ is the point of intersection of the circumcircles of $E_CIB_I$ and $E_BIC_I$, show that $KI$ passes through the midpoint $M$ of side $BC$.
Problem
Source: BMO Shortlist 2021
Tags: Balkan, shortlist, 2021, geometry, incenter, excenter
09.05.2022 11:50
We wish to prove that $M$ lies on the radical axis of the two circles. With $AC = b$, $AB = c$ and $O_B$ being the circumcenter of $E_BI_CI$, if we find an expression for the power $MO_B^2 - R_{E_BI_CI}^2$ which is symmetric with respect to $b$ and $c$, then the analogue for the other circle shall be the same and we will be done. Observe that $\angle I_CO_BE_B = 2\angle I_CIE_B = 90^{\circ}$ and hence $O_BI_CCE_B$ is cyclic. As $I_CE_B = R\sqrt{2}$, $I_CO_B = R, E_BO_C = R$, we deduce by Ptolemy for $I_CO_BE_BC$ (with $\angle I_CO_BE_B = \angle I_CCE_B = 90^{\circ}$) that $O_BC = \frac{CI_C + CE_B}{\sqrt{2}}$. To reduce $MO_B$ to the computation of nicer segments, note that by the Cosine Law in triangle $MCO_B$ we have (with $a=BC$ and $\angle ACB = \gamma$) $O_BM^2 = O_B^2C + \frac{a^2}{4} - a \cdot O_BC \cdot \cos\left(45^{\circ} + \frac{\gamma}{2}\right)$. Hence (using the Pythagorean theorem on $E_BCI_C$) $$ O_BM^2 - R_{E_BI_CI}^2 = \frac{(CI_C+CE_B)^2}{2} + \frac{a^2}{4} - a \cdot \frac{CI_C + CE_B}{\sqrt{2}} \cdot \cos\left(45^{\circ} + \frac{\gamma}{2}\right) - \frac{CI_C^2 + CE_B^2}{2} $$$$ = CI_C \cdot CE_B + \frac{a^2}{4} - \frac{a}{\sqrt{2}}(CI_C + CE_B) \cdot \cos\left(45^{\circ} + \frac{\gamma}{2}\right). $$Now from $\triangle DAC \sim \triangle ABC$ we have $\frac{CI_C}{CI} = \frac{DA}{AB} = \cos\gamma$ and from $\triangle IE_BC$ with $\angle ICE_B = 90^{\circ}, \angle E_BIC = 45^{\circ}$ we get $CE_B = CI$ and so the above expression becomes $$ CI^2\cos\gamma + \frac{a^2}{4} - \frac{a}{\sqrt{2}}\cdot CI \cdot (1+\cos\gamma)\cdot \cos\left(45^{\circ} + \frac{\gamma}{2}\right). $$ We now compute $CI = \sqrt{\frac{ab(a+b-c)}{a+b+c}}$ (from the angle bisector formula), $\cos \gamma = \frac{b}{a}$, $\sin\frac{\gamma}{2} = \sqrt{\frac{1 - \cos \gamma}{2}} = \sqrt{\frac{a-b}{2a}}$, as well as $\cos\left(45^{\circ} + \frac{\gamma}{2}\right) = \sqrt{\frac{1+\cos(90^{\circ}+\gamma)}{2}} = \sqrt{\frac{1-\sin \gamma}{2}} = \sqrt{\frac{a-c}{2a}}$, so having in mind $a = \sqrt{b^2+c^2}$ the main expression becomes $$ \frac{b^2(a+b-c)}{a+b+c} + \frac{a^2}{4} - \frac{a+b}{2} \sqrt{\frac{b(a+b-c)(a-c)}{a+b+c}}. $$To argue that the latter is symmetric with respect to $b$ and $c$, we may remove the summand $\frac{a^2}{4}$ and multiply with $a+b+c$ and so work instead with $b^2(a+b-c) - \frac{a+b}{2}\sqrt{b(a-c)(a+b-c)(a+b+c)}$.
09.05.2022 20:10
It suffices to show $M$ lies on the radical axis of the two circles. To do, for a point $X$ define: $$ f(X)=\mathrm{Pow}_{\odot E_{C}II_{B}}{\left(X\right)}-\mathrm{Pow}_{\odot ABC}{\left(X\right)} $$which is a linear function. We then have $f(C)=CI \cdot CE_{C}=ab$ and also, using $\triangle ADB \cap I_{B} \sim \triangle CAB \cap I$ we get: $$ f(B)=BI_{B} \cdot BI=BI^2 \cdot \frac{c}{a}=\frac{c}{a} \cdot \frac{BI}{BE_{B}} \cdot \underbrace{BI \cdot BE_B}_{ac}=\frac{c^2 (s-b)}{s} $$Then we have, by linearity: \begin{align*} f(M)&=\frac{f(B)+f(C)}{2} \\ &=\frac{abs+c^2(s-b)}{2s} \\ &=\frac{ab(a+b+c)+c^2(a+c-b)}{4s} \\ &=\frac{a^2b+a\left(b^2+c^2\right)+abc+c^3-bc^2}{4s} \\ &=\frac{a^3+\cancel{bc^2}+b^3+c^3+abc-\cancel{bc^2}}{4s} \tag{$a^2=b^2+c^2$} \\ &=\frac{a^3+b^3+c^3+abc}{4s} \end{align*}We thus have: $$ \mathrm{Pow}_{\odot E_{C}II_{B}}{\left(M\right)}=f(M)+\mathrm{Pow}_{\odot ABC}{\left(M\right)}=\frac{a^3+b^3+c^3+abc}{4s}-\frac{a^2}{4} $$which is symmetric under $b \leftrightarrow c$ so $\mathrm{Pow}_{\odot E_{C}II_{B}}{\left(M\right)}=\mathrm{Pow}_{\odot E_{B}II_{C}}{\left(M\right)}$ which is what we wanted.
13.05.2022 13:30
Let $O_1$ and $O_2$ be centers of $II_CE_B$ and $II_BE_C$ and Let $R_1$ and $R_2$ be their radius. Claim $ : O_1I_CCE_B$ and $O_2I_BBE_C$ are cyclic. Proof $:$ Note that $\angle I_CO_1E_B = 2\angle I_CIE_B = \angle 90$. we prove the other one with same approach. Note that we need to prove $MO_1^2 - R_1^2 = MO_2^2 - R_2^2$. $MO_1^2 = O_1C^2 + \frac{a^2}{4} - a . O_1C . \cos{(45 + \frac{C}{2})}$ $R_1^2 = \frac{I_CE_B}{2\sin{45}}^2 = \frac{I_CE_B^2}{2}$ $O_1C^2 = CI_C.CI + R_1^2$ so $MO_1^2 - R_1^2 = CI_C.CI + \frac{a^2}{4} - a . O_1C . \cos{(45 + \frac{C}{2})}$ so we need to prove $CI^2 - pow_{BI_BI_CC}(I) - a . O_1C . \cos{(45 + \frac{C}{2})} = BI^2 - pow_{BI_BI_CC}(I) - a . O_2B . \cos{(45 + \frac{B}{2})}$ or $CI^2 - a.\frac{CI_C+CE_B}{\sqrt{2}}.\cos{(45 + \frac{B}{2})} = BI^2 - a.\frac{BI_B+BE_C}{\sqrt{2}}.\cos{(45 + \frac{C}{2})}$ and Note that $\frac{CI_C}{CI} = \frac{b}{a}$ and $\frac{BI_B}{BI} = \frac{c}{a}$ and $\frac{CE_B}{BE_C} = \frac{BI}{CI}$ then just expand both sides and we're Done. Any synthetic by the way ?
13.05.2022 14:55
any synthetic?
16.06.2022 02:02
Here's a synthetic proof: Lukaluce wrote: Let $ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$. Let the height from $A$ cut its side $BC$ at $D$. Let $I, I_B, I_C$ be the incenters of triangles $ABC, ABD, ACD$ respectively. Let also $E_B, E_C$ be the excenters of $ABC$ with respect to vertices $B$ and $C$ respectively. If $K$ is the point of intersection of the circumcircles of $E_CII_B$ and $E_BII_C$, show that $KI$ passes through the midpoint $M$ of side $BC$. Claim: $I_BI_C \parallel E_BE_C$. Proof: Consider the spiral sim $\sigma$ at $D$ sending $C \to A$ and $A \to B$. Then $\sigma$ sends $I_C$ to $I_B$. Hence, $$ \triangle DCI_C \sim \triangle DAI_B \implies \triangle DCA \sim \triangle DI_CI_B $$As $\angle I_CDC = 45^\circ$, hence $\angle (I_BI_C,AC) = 45^\circ$. But its direct that $\angle (E_BE_C,AC) = 45^\circ$. Hence $I_BI_C \parallel E_BE_C$. $\square$ Now note points $E_B,E_C,B,C$ are concyclic (they lie of circle with diameter $E_BE_C$). So Reim's Theorem gives that points $I_B,I_C,C,B$ are concyclic. Now ignore all points in the figure and only look at points $$ I,B,C,I_B,I_C,E_B,E_C $$Invert at $I$. Our problem just becomes equivalent to the following well-known Ceva's Theorem application: Let $ABC$ be a triangle and $D,E,F$ be points on sides $BC,CA,AB$, respectively. Suppose $AD,BE,CF$ concur. If $D$ is the midpoint of segment $BC$, then $EF \parallel BC$.
22.06.2022 09:45
guptaamitu1 wrote: Our problem just becomes equivalent to the following well-known Ceva's Theorem application Could you please clarify this? How exactly does inverting make the two problems equivalent? Thank you in advance!
22.06.2022 13:15
After inversion intersection of two circles becomes the intersection of two lines. Further, after inversion line joining points $I_BI_C$ and $E_BE_C$ both become parallel to $BC$. We obtain the required configuration. Also, the official solution does something similar but without inversion.