Problem

Source: BMO Shortlist 2021

Tags: Balkan, shortlist, 2021, algebra, Functional inequality



Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(x^2 + y) \ge (\frac{1}{x} + 1)f(y)$$holds for all $x \in \mathbb{R} \setminus \{0\}$ and all $y \in \mathbb{R}$.