Problem

Source: Own. Malaysian IMO TST 2022 P2

Tags: combinatorial geometry, combinatorics



Let $\mathcal{S}$ be a set of $2023$ points in a plane, and it is known that the distances of any two different points in $S$ are all distinct. Ivan colors the points with $k$ colors such that for every point $P \in \mathcal{S}$, the closest and the furthest point from $P$ in $\mathcal{S}$ also have the same color as $P$. What is the maximum possible value of $k$? Proposed by Ivan Chan Kai Chin