Problem

Source: Balkan MO 2022 P3

Tags: Balkan Mathematics Olympiad, functional equation, algebra



Find all functions $f: (0, \infty) \to (0, \infty)$ such that \begin{align*} f(y(f(x))^3 + x) = x^3f(y) + f(x) \end{align*}for all $x, y>0$. Proposed by Jason Prodromidis, Greece