Problem

Source: Spanish MO 2022 P4

Tags: Spain, geometry, geometric inequality



Let $P$ be a point in the plane. Prove that it is possible to draw three rays with origin in $P$ with the following property: for every circle with radius $r$ containing $P$ in its interior, if $P_1$, $P_2$ and $P_3$ are the intersection points of the three rays with the circle, then \[|PP_1|+|PP_2|+|PP_3|\leq 3r.\]