Problem

Source: Israel Olympic Revenge 2019 P3, also SL G7.

Tags: geometry, circumcircle, angle bisector, incenter



Let $ABCD$ be a circumscribed quadrilateral, assume $ABCD$ is not a kite. Denote the circumcenters of triangle $ABC,BCD,CDA,DAB$ by $O_D,O_A,O_B,O_C$ respectively. a. Prove that $O_AO_BO_CO_D$ is circumscribed. b. Let the angle bisector of $\angle BAD$ intersect the angle bisector of $\angle O_BO_AO_D$ in $X$. Similarly define the points $Y,Z,W$. Denote the incenters of $ABCD, O_AO_BO_CO_D$ by $I,J$ respectively. Express the angles $\angle ZYJ,\angle XYI$ in terms of angles of quadrilateral $ABCD$.