Problem

Source: ISR 2021 February TST p.3

Tags: geometry, congruent triangles



Consider a triangle $ABC$ and two congruent triangles $A_1B_1C_1$ and $A_2B_2C_2$ which are respectively similar to $ABC$ and inscribed in it: $A_i,B_i,C_i$ are located on the sides of $ABC$ in such a way that the points $A_i$ are on the side opposite to $A$, the points $B_i$ are on the side opposite to $B$, and the points $C_i$ are on the side opposite to $C$ (and the angle at A are equal to angles at $A_i$ etc.). The circumcircles of $A_1B_1C_1$ and $A_2B_2C_2$ intersect at points $P$ and $Q$. Prove that the line $PQ$ passes through the orthocenter of $ABC$.