Let $r$ be a positive integer and let $a_r$ be the number of solutions to the equation $3^x-2^y=r$ ,such that $0\leq x,y\leq 5781$ are integers. What is the maximal value of $a_r$?
Source: ISR 2021 TST1 p.4
Tags: Diophantine equation, number theory
Let $r$ be a positive integer and let $a_r$ be the number of solutions to the equation $3^x-2^y=r$ ,such that $0\leq x,y\leq 5781$ are integers. What is the maximal value of $a_r$?